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1. First order Lighthill-Whitham-Richards model  

The first macroscopic models are given independently in the works of L i g h t h i l l 
and W h i t h a m [20] and R i c h a r d s [26]. They apply the analogy between the 
flow of vehicles and the flow of a fluid to create a model with not so great 
complexity, but wide applicability. Lighthill-Whitham-Richards (LWR) model uses 
a fundamental relation (1), a conservation equation (2) and the assumption that the 
speed is a known density function (3). In fact (1) is an equation that is used to 
determine the vehicle flow, regardless of the road section considered and it includes 
the relationship between the flow rate and the density as function of the independent 
arguments – time and space. 
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These models have many shortcomings [6, 24], which are based on many 

unrealistic assumptions. The first one is that speed adapts instantly to the desired 
speed and the flow at the exit of shock waves of congestion or the narrowing of the 
highway is equal to the infrastructure capacity. Another assumption is that the 
density of a shockwave of congestion has lower speed than the speed, where the 
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density is lower. This means that the line will reach the body of the shock, which is 
unrealistic. LWR model is not able to cope with volatility, the type of traffic “stop 
and go” (sequences of acceleration and braking distances on congestions). 

1.1. First order model for the case with incoming and outgoing vehicles  

From the first order model LWR the objective relation (2) is given. It is for the case 
in which the traffic is one-way, with no entering or leaving vehicle on the highway. 
For the case in which there are incoming and outgoing vehicles from the highway 
the following dependence applies: 
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Fig. 1. A highway section with incoming and outgoing vehicles 

where: ri(x, t) are outgoing vehicles, si(x, t) are incoming vehicles, N is number of 
vehicles, dn/dt = q is flow rate, dn/dx=ρ is density. 

1.2. Fundamental diagram of the traffic flow 

For each element of the infrastructure the parameters mean speed v, density ρ and 
flow rate q, which are the three most important variables, are related in a 
fundamental diagram, given in Fig. 2, which is analytically determined by the 
equation 
,ݔሺݍ   (5) ሻݐ ൌ ,ݔሺߩ .ሻݐ ,ݔሺߩሺܨ  .ሻሻݐ

The parameters in the description of the fundamental diagram are: the 
maximum density ρmax, free speed vf, maximum flow rate qmax and critical density 
ρcr. The traffic flow maximum is observed as an optimal combination of the values 
of the other two parameters. The fundamental diagram depends on three parameters 
and must be presented in a three-dimensional space. However, for convenience, the 
following are used in the projection-plane: flow rate-density, density-speed and 
flow rate-speed. Normally flow-density is primarily used. The flow rate is 
determined by the value of the density and is used as an evaluation of the quality of 
the traffic flow for a segment of the highway (Fig. 2). There are two regions in the 
fundamental diagram: the traffic as a flow and congested traffic. The traffic flow 
corresponding to the running fluid is characterized by the velocity and movement of 
the vehicles, while in the congestion mode formations in lines with slow motion and 
consistent accelerations and stops are observed. Increasing the flow rate is 
suspended for the critical value of the density, which is determined by the capacity 
of the infrastructure, this is the maximum possible flow rate. For larger values of 
the density, the flow rate decreases until reset at the maximum value of the density. 
First G r e e n s h i e l d [11] has proposed a mathematical model of the fundamental 
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diagram. He considers that the density and the flow rate linearly decrease, which 
leads to the parabolic shape of the fundamental diagram. Other forms of the 
fundamental diagram have been offered: a parabolic diagram − Greenshield, 
Masson; bi-parabolic diagram with horizontal tangent − G r e e n b e r g [10]; bi-
parabolic diagram − B u i s s o n [2]; triangle diagram − C a s s i d y [3]; trapezoidal 
diagram − D a g a n z o [4]; exponential diagram − D r a k e [7], P a p a g e o r g i o u 
[23]; curvilinear diagram − Cramer, Pipes. Various mathematical models have been 
proposed by various authors to describe the fundamental diagram [9]. They are 
formulated by using the free speed vf, maximum density ρmax, critical density ρcr and 
maximum flow rate qmax. The most popular mathematical relationships are proposed 
by G r e e n s h i e l d [11], G r e e n b e r g [10]. Other models are made up by two 
separate parts for the two modes of traffic by May, Keller, and Van Aerde. The 
relationship between the speed v and the density ρ has certain formulations 
according to Chandler (see [8]), Drew (see [9]), Edie (see [10]) and Williams (see 
[8]), D r a k e (7). 

 
Fig. 2. Fundamental diagram according to: a) Greenshield; b) Drake; c) Cassidy; d) Greenberg 
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It is important to note that there is no universal fundamental diagram for any 
infrastructure. Any dependence above given is displayed for specific conditions and 
applied to specific cases. 

 
Fig. 3. Fundamental diagram density-speed 

2. Second order Payne type model 

The second order Payne-type models [23, 25] eliminate the previous three 
disadvantages by describing the speed variation in dynamics (12) accounting three 
additional processes. The first process is relaxation, which reflects the tendency of 
the driver to increase or decrease the velocity in order to reach your desired speed. 
The second component is convection, which represents the dependence of velocity 
on the moving vehicles entering and leaving a given segment from the highway. 
The third component is anticipation which consists of the change of the speed 
according to the conditions ahead. Essentially Payne uses a car-following model to 
develop his second order macroscopic model, according to which the drivers adapt 
their speed to a certain balance, which is a compromise between the desired and the 
actual speed according to the conditions in the area is 
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This model has also been criticized by D a g a n z o [6], who noted that the 
component anticipation introduced in the model can lead to a negative flow rate 
when the derivatives in the space are big and it becomes unrealistic. Furthermore, 
he noted that the characteristics of the wave can become greater than the mean flow 
rate of the vehicles, which is not possible, since the distribution of the information 
is faster than the vehicles. One possible solution to this problem is given by 
P a p a g a o r g i o u [24], who proposes to accept a zero speed if the model gives 
negative values for the speed. He shows that the model uses the average speed. If 
the speed exceeds these average values it is good because the speed is real, but in a 
negative direction it becomes zero. The models developed on the kinetics of gas 
[12], represent an extension of LWR model, into which a restrictive equation for the 
speed change is introduced. Besides the conservation equation (1) [27] and the 
dynamic equation for the speed (12), these models apply an equation of restriction 
(dynamic equation for the speed)  
(13)   డ௵
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where P is the traffic pressure, J is the covariance of the speed Θ. 
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In other models [13-17] in an invisible way microscopic parameters have been 
included, such as the length of the car, the reaction time of the driver, the dispersion 
speed, probability shifting on the lanes, acceleration time and others. These models 
take into account the same phenomenon in the space occupied by the car, so that it 
can never be empty. One example among hierarchical levels is a model given by 
(14) [29]: 
ݐ௡ሺݒ   (14) ൅ ܶሻ ൌ ሻݐ௡ିଵሺݔ൫ܨ െ ሻ൯ݐ௡ሺݔ ൅ ሻݐ௡ିଵሺݔ൫ܩ െ ሻ൯ݐ௡ሺݔ ൌ 

ൌ ,ݔሺߩ௘ሺݒ ሻݐ ൅ ሻݔ∆ ൅ ߙ ቀߜଵ
డ௩ሺ௫ାఋమ,   ௧ሻ

డ௫
ቁ ;  0 ൏ ଶߜ ൏  .ଵߜ

The function F denotes the speed in balance, while G reflects the linear 
reduction of the speed difference between the current car n and the leading n − 1. 
Another improvement to LWR model is made by D a g a n z o [5], L e s o r t [19] and 
L i u [21]. ARZ model developed by Aw-Rascle is seeking solutions of a partial 
differential equation of second order. A variable in the equation is the vehicle 
speed. Next equation is defined as a task of Rieman: 
(15)   ௧ܸ ൅ ܸ ௫ܸ ൌ ௏౛౧ሺఘሻି௏
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where p'(ρ) accounts the drivers’ behavior. 

The model of Zhang- Riemann task is solved by neglecting the condition for 
relaxation. The equation for speed variation becomes (16) 
(16) డ௏

డ௧
൅ డ௏

డ௫
൫ܸ െ ߩ eܸ
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The model of P a p a g e o r g i o u [22] and K o t s i a l o s [18] is known as 

METANET. The relation is presented in a discrete form: 
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where ρm,i (k) is the density, Vm,i(k) is the vehicle flow speed, qm,i (k) is the flow rate. 
Analytical models that take into account the change of lane geometry, add a 
component for the speed change in Payne model, presented in a discrete form. The 
second order models are made to predict the traffic when it is in balance. To take 
into account the conditions of imbalance, these models are complicated by 
additional components. The analytical solution of these models is complex, and 
therefore they are not always applied. The research directions are in the aspect of 
reporting and resolving the cases of congestion; cases to reduce the mean speed; to 
reduce the average time in the section of the highway [1], by setting parameters of 
the model. Restrictions requiring the traffic to behave like fluid are added. For 
practical considerations the following additional restrictions are imposed: 

• The traffic flow on the lane must be below its maximum value. This 
condition is presented as follows: 
,ݔሺߩ   (18) ሻݐ ൑  ,ୡ୰ߩ

,ݔሺߩ ሻݐ ൑ ୫ୟ୶ߩ0.5 െ according  to Greenshield; 
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ܸሺݔ, ሻݐ ൒ ௙ܸ ൬1 െ
୫ୟ୶ߩ0.5

୫ୟ୶ߩ
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• The maximum density that limits the maximum speed  
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The traffic flow models of higher order in [28, 14] include specific 
phenomena, such as traffic “stop and go” compression and the narrowing of the 
highway, but these models are more mathematical, they are very complex and 
difficult to be used. 

2.1. Demonstration of the second order Payne-type macroscopic level 

Payne assumed a subjective dependence  
,ݔሺݒ   (20) ሺݐ ൅ ܶሻ, ݐ ൅ ܶሻ ൌ ܸ௘ሺߩሺݔ ൅  ሻሻܦ
where Ve is the static speed from the fundamental diagram, D is the growth 
increment in the distance, x(t) is the vehicle’s location in time t, v(x, t) is the actual 
speed, variable, t + T is the reaction time. 
ܦ   (21) ൌ ଵ

ఘ
. 

Equation (20) defines that the future actual speed of the vehicle will respond to 
the static speeds, which define the fundamental diagram Ve. 

Processing dependence (20):  
• Decomposition in the order of Taylor’s left part of (20) at point (x, t). 

Decomposition in the growth increment T:  
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• Decomposition in the order of Taylor’s right part of equation (20). 
Decomposition in the growth increment D is 
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From (22) and (23) (24) follows: 
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After taking into account the dependences (21) and (24), (25) follows: 
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After transformation of (25) and reporting the negative sign of the decreasing 
fundamental diagram (Fig. 3), (26) follows: 
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That equation is equivalent to (12), which proves the second order Payne model. 
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4. Conclusions 

The paper analyzes the shortcomings of the first order model of traffic dynamics on 
a highway stretch. Analytically the second order model has been derived. 
Numerical simulations of the dynamical behavior of the second order model have 
been performed. The step responses for this second order model have been 
evaluated. These results can be used for identification of the transfer function of a 
highway stretch. Thus, the relations from automatic control theory can be applied in 
the defining of the control influence of such distributed transportation systems. 
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